Effet de la macro-conception de l'implant sur sa stabilité primaire : un essai clinique randomisé
pdf (English)

Mots-clés

Implants dentaires
couple d’insertion
stabilité primaire
conception de l’implant
géométrie de l’implant
filetage de l’implant
analyse de la fréquence de résonance

Comment citer

ZAAROUR, J., CHRABIEH, E., RAMEH, S., KHOURY, A., & YOUNES, R. (2022). Effet de la macro-conception de l’implant sur sa stabilité primaire : un essai clinique randomisé. Revue Arabe Internationale De Dentisterie (IAJD), 13(1), 7-15. https://doi.org/10.70174/iajd.v13i1.647

Résumé

Objectif de l’étude : Comparer l’impact de deux macro-conceptions d’implants différentes sur la stabilité primaire.

Matériel et méthodes: Les patients ont reçu des implants dans la mâchoire postérieure inférieure (os de type II et III). Deux implants macro-design différents ont été insérés au hasard conformément à un protocole de forage conventionnel, le premier est l’implant autotaraudeur hybride: Straumann® BL au niveau osseux et le second est un implant autotaraudeur conique: Straumann® BLT conique au niveau osseux.
16 implants (3,3 et 4,1 mm de diamètre, longueur comprise entre 8 et 10 mm) de chacun des deux implants susmentionnés ont été utilisés. L’évaluation primaire de la stabilité de chaque conception d’implant a été réalisée à l’aide de deux méthodes, enregistrant le couple d’insertion maximal IT (dispositif DTA) et enregistrant le quotient de stabilité de l’implant ISQ à l’aide de l’analyse de fréquence de résonance RFA (avec le dispositif Osstell).

Résultats : Dans tous les types d’os, les implants BLT ont montré un couple d’insertion moyen IT significativement plus élevé par rapport au BL avec respectivement 46,67±6,85 Ncm et 35,77±6,72 Ncm pour (p = 0,01 selon le test Anova), et un QIS moyen plus élevé avec respectivement 77,15±5,16 et 70,74±4,83. (p = 0,01 selon le test Anova).

Conclusion: Dans les os de type II et III, l’implant autotaraudeur conique (Straumann® BLT a statistiquement montré une meilleure stabilité primaire par rapport à l’implant autotaraudeur hybride: Straumann® niveau osseux BL. Dans les limites de la présente étude, on peut conclure que la macro-conception de l’implant peut être considérée comme un paramètre fiable pour atteindre une stabilité primaire acceptable des implants dentaires dans les zones à faible densité osseuse. Dans la présente étude, les deux méthodes utilisées pour évaluer la stabilité primaire des différents macro-modèles, l’évaluation du couple et l’appel de demandes, ont montré une faible corrélation. La macro-géométrie est essentiellement conçue pour satisfaire les besoins dans certaines situations osseuses critiques et dans le protocole de chargement immédiat.

https://doi.org/10.70174/iajd.v13i1.647
pdf (English)

Références

1. Predicting osseointegration by means of implant primary stability.. , . Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J.,. 2004., Clin Oral Implants Res, pp. p. 15:520–528..
2. Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test. Bayarchimeg, Dorjpalam. 43:30-36 , s.l. : J Periodontal Implant Sci , 2013.
3. Dental Implant Macro-Design Features Can Impact the Dynamics of Osseointegratio. Marcio Vivan Cardoso, Katleen Vandamme. s.l. : Clinical Implant Dentistry and Related Research, 2013, Vol. 19:55:51 .
4. Nanocoating of titanium implant surfaces with organic molecules Polysaccharides including glycosaminoglycans. Gurzawska K., et al. 2012, Journal of Biomedical Nanotechnology 8.6, pp. 1012-1024.
5. Patient selection and preparation. Tissue integrated prostheses: osseointegration in clinical dentistry. Lekholm U, Zarb GA. s.l. : Quintessence Publishing Company, Chicago, USA, 1985, pp. 199–209.
6. Effect of the implant macro-design on the primary stability, review of the litterature ans an ex-vivo model study. Chrabieh, Emile. 2017, JAJD, p. vol 8.
7. Primary Stability of a Hybrid Self‐Tapping Implant Compared to a Cylindrical Non‐Self‐Tapping Implant with Respect to Drilling Protocols in an Ex Vivo Model. akeshi Toyoshima, PhD, et al. 1, Clinical implan dentistry : s.n., 2011, Vol. 13.
8. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin Oral Impl Res. Gallucci GO, Hamilton A, Zhou W, Buser D, Chen S. Suppl.16, 2018, Clinical Oral Implants Research, Vol. 29, pp. 106–134. https://doi.org/10.1111/ clr.13276.
9. Dental Implant Thread Pitch and Its Influence on the Osseointegration Process: An In Vivo Comparison Study. Ester Orsini, Gianluca Giavaresi, Alessandra Trirè,Vittoria Ottani, Stefano Salgarello. 2012, The International Journal of Oral & Maxillofacial Implants, pp. 27:383–392.
10. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. Steigenga, J., Al-Shammari, K., Misch, C., Nociti, F.H. Jr & Wang, H.L. 2004, Journal of Periodontology, pp. 75: 1233–1241.
11. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Chun, H.J., Cheong, S.Y., Han, J.H., Heo, S.J., Chung, J.P., Rhyu, I.C., Choi, Y.C., Baik, H.K., Ku, Y. & Kim, M.H. 2002, Journal of Oral Rehabilitation, pp. 29: 565–574.
12. optimized thread pitch design and stress analysis of the cylinder screwed dental implant. Kong, L., Liu, B.L., Hu, K.J., Li, D.H., Song, Y.L., Ma, P. & Yang, J. 22, 2006, Hua Xi Kou Qiang Yi Xue Za Zhi, Vol. 2, pp. 24: 509–512–515.
13. influence of helix angle and density on primary stability of immediately loaded dental implants: Three-dimensional finite element analysis. Ma, P., Liu, H.C., Li, D.H., Lin, S., Shi, Z. & Peng, Q.J. 2007, Zhonghua Kou Qiang Yi Xue Za Zhi, pp. 42: 618–621.
14. Scientific rationale for dental implant design. Misch, C.E., Strong, T. & Bidez, M.W. 2008, Contemporary Implant Dentistry.3 edition, St Louis: Mosby., pp. 200–229.
15. Measurements comparing the initial stability of five designs of dental implants. O’Sullivan, D., Sennerby, L. & Meredith, N. 2000, Clinical Oral Implants Research, pp. 2: 85–92.
16. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Shu-Wei Wu, Chia-Ching Lee, Ping-Yuen Fu, Shang-Chih Lin. 2011, Med Eng Phys, p. doi:10.1016/j.
17. Resonance frequency analysis measurements of implants at placement surgery. Ostman PO, Hellman M, Wendelhag I, Sennerby L. 19, 2006, Int J Prosthodont, pp. 77–83. 77–83.
18. “Relationship between implant stability measurements obtainedbyinsertiontorqueandresonancefrequencyanalysis:a systematic review. F. S. Lages, D. W. Douglas-de Oliveira, and F. O. Costa,,”. 2018. , Clinical Implant Dentistry and Related Research, pp. vol. 20, no. 1, pp. 26–33, .
19. Factor influencing the resonance frequency of dental implants. Huang H-M, Chiu C-L, Yeh C-Y, Lee S-Y. 2003, J Oral Maxillofac Surg ., pp. 61:1184–1188.
20. comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Friberg B, Sennerby L, Meredith N, Lekholm U. 1999, Int J Oral Maxillofac Surg , pp. 28:297–303.
21. Implant design and intraosseous stability of immediately placed implants a human cadaver study. Akkocaoglu, M., Uysal, S., Tekdemir, I., Akca, K. & Cehreli, M.C. 2005, Clinical Oral Implants Research, pp. 16: 202–209.
22. “Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications,. L. Sennerby and N. Meredith, ”. 2008, Periodontology 2000,, pp. vol. 47, no. 1, pp. 51–66, .
23. Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Y. Zhou, T. Jiang, M. Qian et al., “. 2008. , Biomaterials, , pp. vol. 29, no. 4, pp. 461–474, .
24. “Correlation between implant stability quotient and boneimplant contact: a retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans,. A. Scarano, M. Degidi, G. Iezzi, G. Petrone, and A. Piattelli,. 2006, Clinical Implant Dentistry and Related Research,, pp. vol. 8, no. 4, pp. 218–222,.
25. Implant stability measurement of delayed and immediately loaded implants during healing. Samson, Mark Bischof Rabah Nedir Serge Szmukler‐Moncler Jean‐Pierre Bernard Jacky. Rabah Nedir Serge Szmukler‐Moncler Jean‐Pierre Bernard Jacky Samson : s.n., 2004.
26. Resonance frequency analysis measurements of implants at placement surgery,. Ostman PO, Hellman M, Wendelhag I, Sennerby L. 2006, – Int J Prosthodont, pp. 19(1):77-78.
27. Influence of cortical bone thickness and implant length on implant stability at the time of surgery: Clinical, prospective, biomechanical, and imaging study. . Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. 2005, pp. 37:776–780.
28. . Indications for immediate loading of implants and implant success.. Nkenke, E. & Fenner, M.,. 2006, Clinical Oral Implants Research, , pp. p. 17: 19–34.
29. Does bone mineral density influence the primary stability of dental implants? A systematic review. Mariana Marquezan. 7, s.l. : linical Oral research, 2001, Vol. 23.
30. Resonance Frequency Measurement of Implant Stability In Vivo on Implants with a Sandblasted and Acid-Etched Surface. Barewal, Reva M., et al. 5, s.l. : International Journal of Oral & Maxillofacial Implants, 2003, Vol. 18. p641-651. 11p.
31. Correlation Between Insertion Torque and Survival Rates in Immediately Loaded Implants in the Maxilla: A Retrospective Study. Rizkallah, Nadia, Fischer, Scott and Kraut, Richard A. 3, s.l. : Implant Dentistry, 2013, Vol. 22.
32. The Effects of Superficial Roughness and Design on the Primary Stability of Dental Implants. Dos Santos M, Elias C, Lima J,. 2011, Clinical Implant Dentistry and Related Research, pp. 215-223, Volume 13, Number 3.
33. Implant primary stability determined by resonance frequency analysis: Correlation with insertion torque, histologic bone volume, and torsional stability at 6 weeks. Makary, C , Rebaudi, A., Sammartino, G., Naaman, N. 2012, Implant Dent., pp. , 21, 474–480.
34. Implant Primary Stability Determined by Resonance Frequency Analysis: Correlation With Insertion Torque, Histologic Bone Volume, and Torsional Stability at 6 Weeks. Makary C., Rebaudi A., Sammartino G, Naaman N. 2012, Implant Dent, pp. 21(6):474-490.
35. Effect of insertion torque on titanium implant osseointegration: An animal experimental study. Duyck J, Roesems R, Cardoso MV, et al. . 2015;, .Clin Oral Implants Res., pp. 26:191–196.
36. Reliability and failure modes of internal conical dental implant connections. Bonfante, Amilcar C. Freitas-Ju´ nior Erika O. Almeida Estevam A. 2, s.l. : Clinical oral implants research, 2010, Vol. 24.
37. “Implant loading protocols for edentulous patients with fixed prostheses: a systematic review and metaanalysis,”. P. Papaspyridakos, C.-J. Chen, S.-K. Chuang, and H.-P. Weber,. 2014, The International Journal of Oral & Maxillofacial Implants, , pp. vol. 29, pp. 256–270,.
38. “Consensus statementsandclinicalrecommendationsforimplantloading protocols. G. O. Gallucci, G. I. Benic, S. E. Eckert et al.,. 2013, The International Journal of Oral & Maxillofacial Implants, ,, pp. vol. 29, pp. 287–290.
39. “Loading protocols for single-implant crowns: a systematic review and meta-analysis,” . G. I. Benic, J. Mir-Mari, and C. H¨ammerle,. 2014, The International Journal of Oral & Maxillofacial Implants, , pp. vol. 29, pp. 222–238,.
40. Meta-analysis of correlations between marginal bone resorption and high insertion torque of dental implants. . Li H, Liang Y, Zheng Q. 2015, Int J Oral Maxillofac Implants. , pp. ;30:767–772.
41. Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. . Duyck J, Corpas L, Vermeiren S, et al. 2010, Clin Oral Implants Res. , pp. ;21: 877–884. .
43. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Meredith N, Book K, Friberg B, Jemt T, Sennerby L. 1997, Clin Oral Implants Res, pp. 8:226–233.
44. Three-dimensional morphometric analysis of human cadaver bone:microstructural data from maxilla and mandible. Fanuscu, M.I. & Chang, T.L. 2004, Clinical Oral Implants Research, pp. 15: 213–218.
45. The Effects of Superficial Roughness and Design on the Primary Stability of Dental Implants. Dos Santos M, Elias C, Lima J,. 2011, Clinical Implant Dentistry and Related Research, pp. 215-223, Volume 13, Number 3.
46. Dental Implant Thread Pitch and Its Influence on the Osseointegration Process: An In Vivo Comparison Study. Ester Orsini, Gianluca Giavaresi, Alessandra Trirè,Vittoria Ottani, Stefano Salgarello. 2012, The International Journal of Oral & Maxillofacial Implants, pp. 27:383–392.