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Introduction: Dental caries is a multifactorial disease prevalent in children and is often influenced 
by behavioral, environmental, and genetic factors. Traditional caries risk assessment methods have 
a limited accuracy and objectivity. Machine learning (ML) models provide a data-driven approach 
for predicting caries risk, thereby enabling targeted interventions. 

Objectives: The main objective of this study is to develop and validate ML models for predicting 
caries risk in pediatric patients aged 6–12 years by incorporating clinical, behavioral, dietary, and 
socioeconomic factors.

Methods: This retrospective observational study included 148 children aged 6–12 years. Data, 
including demographic details, Decayed Missing Filling Treatment (DMFT) scores, dietary habits, 
fluoride exposure, and socioeconomic factors, were collected from clinical records and structured 
interviews. The dataset was preprocessed using imputation, normalization, and feature-selection 
techniques. Five ML models (Logistic Regression, Random Forest, SVM, XGBoost, and Neural 
Networks) were trained and evaluated using metrics, such as accuracy, sensitivity, specificity, and 
AUC-ROC. Patients were stratified into low, moderate, and high-risk categories based on predictions.

Results: The XGBoost model achieved the highest AUC-ROC (0.94), followed by the Neural Networks 
(0.92). DMFT score (35.2%), sugary food consumption (28.7%), and fluoride exposure (18.3%) 
were the most significant predictors of caries risk. Risk stratification classified 21.0% of patients as 
high-risk, emphasizing the need for targeted preventive measures. Significant associations were 
observed between caries risk and fluoride exposure (P < 0.01) and sugary food consumption (P < 
0.05).

Conclusions: ML models, particularly XGBoost, provide accurate and actionable caries risk 
predictions in children and outperform traditional assessment methods. The integration of ML 
tools in clinical practice can enhance personalized prevention and resource allocation, ultimately 
improving pediatric oral health outcomes.
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PRÉDICTION DU RISQUE DE CARIE CHEZ LES PATIENTS 
PÉDIATRIQUES À L’AIDE DE TECHNIQUES D’APPRENTISSAGE 
AUTOMATIQUE: UNE ÉTUDE RÉTROSPECTIVE

Introduction: La carie dentaire est une maladie multifactorielle fréquente chez l’enfant souvent 
influencée par des facteurs comportementaux, environnementaux et génétiques. Les méthodes 
traditionnelles d’évaluation du risque carieux présentent une précision et une objectivité limitées. 
Les modèles d’apprentissage automatique (AA) offrent une approche basée sur les données pour 
prédire le risque carieux, permettant ainsi des interventions ciblées. 

Objectifs: L’objectif principal de cette étude est de développer et de valider des modèles d’AA pour 
prédire le risque carieux chez les patients pédiatriques âgés de 6 à 12 ans en intégrant des facteurs 
cliniques, comportementaux, alimentaires et socio-économiques. 

Méthodes: Cette étude observationnelle rétrospective a porté sur 148 enfants âgés de 6 à 12 ans. 
Les données, notamment les données démographiques, les scores de traitement des obturations 
manquantes (TCMM), les habitudes alimentaires, l’exposition au fluorure et les facteurs socio-
économiques, ont été recueillis à partir de dossiers cliniques et d’entretiens structurés. L’ensemble 
de données est prétraité par des techniques d’imputation, de normalisation et de sélection de 
caractéristiques. Cinq modèles ML (régression logistique, forêt aléatoire, SVM, XGBoost et réseaux 
neuronaux) ont été entraînés et évalués à l’aide de mesures telles que la précision, la sensibilité, 
la spécificité et l’ASC-ROC. Les patients ont été classés en catégories de risque faible, modéré et 
élevé en fonction des prédictions.

Résultats: Le modèle XGBoost a obtenu l’ASC-ROC la plus élevée (0,94), suivi des réseaux neuronaux 
(0,92). Le score DMFT (35,2 %), la consommation d’aliments sucrés (28,7 %) et l’exposition au 
fluorure (18,3 %) étaient les prédicteurs les plus significatifs du risque de carie. La stratification du 
risque a classé 21,0 % des patients comme étant à haut risque, soulignant la nécessité de mesures 
préventives ciblées. Des associations significatives ont été observées entre le risque de carie et 
l’exposition au fluorure (p < 0,01) et la consommation d’aliments sucrés (p < 0,05). 

Conclusions: Les modèles d’apprentissage automatique, en particulier XGBoost, fournissent des 
prédictions précises et exploitables du risque de carie chez les enfants et surpassent les méthodes 
d’évaluation traditionnelles. L’intégration des outils d’apprentissage automatique dans la pratique 
clinique peut améliorer la prévention personnalisée et l’allocation des ressources, améliorant ainsi 
les résultats en matière de santé bucco-dentaire pédiatrique. 

Mots clés: Caries dentaires. Évaluation des risques, apprentissage automatique, intelligence 
artificielle, prédiction
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Introduction

Dental caries are one of the most 
prevalent chronic diseases affect-
ing children worldwide and pose 
significant challenges to oral and 
overall health [1].  Although largely 
preventable, more than 530 million 
children worldwide have dental 
caries in the primary dentition, and 
most of the decayed teeth are un-
treated [2]. The multi-factorial na-
ture of caries, involving a complex 
interplay between host factors, diet, 
microbial activity, and environmen-
tal influences, makes its prevention 
and management particularly chal-
lenging [3].

Early identification of children at 
risk of caries is essential for timely 
intervention and prevention [4]. 
Traditional caries risk assessment 
methods rely on clinical examina-
tion and subjective evaluation of 
risk factors, such as diet, oral hy-
giene practices, fluoride exposure, 
and socioeconomic status [5]. How-
ever, these approaches often lack 
accuracy and objectivity, leading to 
underestimation or overestimation 
of the caries risk. The integration of 
advanced technologies such as ma-
chine learning (ML) offers a promis-
ing avenue for improving risk pre-
diction by analyzing large datasets 
and identifying complex patterns 
that may be overlooked by tradi-
tional methods [6].

Machine learning, a subset of ar-
tificial intelligence (AI), uses algo-
rithms to learn from data and make 
predictions or decisions without ex-
plicit programming. In dentistry, ML 
has shown potential for diagnostic 
imaging, treatment planning, and 
risk assessment [7]. Specifically, ML 
models can synthesize a wide range 
of caries risk factors, such as the 
Decayed, Missing, and Filled Teeth 
(DMFT) index, dietary habits, fluo-
ride exposure, family history, and 
socioeconomic status to generate 
accurate and personalized risk pre-
dictions. These models not only 
enhance precision but also provide 
actionable insights for tailoring pre-
ventive strategies [8].

Despite promising applications of 
ML in dentistry, its use in pediatric 
caries risk prediction remains rela-
tively under explored. Pediatric pop-
ulations present unique challenges, 
including rapidly changing dietary 
and oral hygiene behaviors, variable 
fluoride exposure, and differing sus-
ceptibility to caries owing to devel-
opmental factors [9]. Furthermore, 
the inclusion of diverse risk factors, 
such as parental education, access 
to preventive care, and family his-
tory, highlights the complexity of 
risk modeling in children [10].

This study aimed to develop and 
validate ML models for predicting 
caries risk in children aged 6–12 
years by leveraging a comprehen-
sive dataset that included clinical, 
behavioral, dietary, and socioeco-
nomic factors. By integrating ad-
vanced ML algorithms, this study 
sought to overcome the limita-
tions of traditional risk assessment 
methods and provide a robust, da-
ta-driven approach for the early 
identification of high-risk individu-
als. The findings of this study have 
the potential to inform personalized 
preventive strategies, improve re-
source allocation, and ultimately 
reduce the burden of caries in pedi-
atric populations.

Materials and Methods

Study Design and Ethical Approval
This retrospective observational 

study was designed to develop 
and validate machine learning (ML) 
models for predicting caries risk in 
pediatric patients aged 6–12 years. 
A total of 148 children were in-
cluded and their data were collected 
from clinical records and structured 
interviews. The study protocol was 
approved by the institutional ethics 
committee with approval number 
Ref#GGSDC/Dean/Res/21/14 and 
the study adhered to the ethical 
principles outlined in the Declara-
tion of Helsinki. Prior to data collec-
tion, written informed consent was 
obtained from the parents or legal 
guardians of all the participants.

This study was designed to lever-
age existing clinical and behavioral 
data, making it both resource-ef-
ficient and feasible within a given 
time frame. Using a retrospective 
data set, we ensured that the study 
utilized real-world, historical data 
to test the applicability of machine 
learning models in predicting caries 
risk. Additionally, the study design 
aimed to integrate multiple domains 
of risk factors, including clinical, di-
etary, oral hygiene, fluoride expo-
sure, and socioeconomic indicators 
to create a robust predictive model.

Participant Selection
The participants were selected 

based on a set of predefined inclu-
sion and exclusion criteria to ensure 
that the study cohort was represen-
tative and suitable for the study’s 
objectives. Children aged 6–12 
years were eligible for inclusion if 
they had complete dental records 
including detailed information on di-
etary habits, oral hygiene practices, 
fluoride exposure, socioeconomic 
status, and clinical oral health find-
ings. These parameters were critical 
for ensuring that the necessary data 
points were available for the devel-
opment and validation of the ma-
chine learning models.

Inclusion Criteria
Children aged 6–12 years with 

complete dental records from the 
past 12 months were included to 
provide recent and relevant clinical 
data. Additionally, the availability 
of behavioral and lifestyle informa-
tion, such as dietary habits and oral 
hygiene practices, was mandatory 
to incorporate critical modifiable 
risk factors into predictive models. 
Documented exposure to fluoride 
through toothpaste, mouth rinses, 
or professional treatments was an-
other essential inclusion criterion, 
given the significant role of fluoride 
in caries prevention. Finally, socio-
economic information, including 
parental education and household 
income, was required to examine 
the potential influence of social de-
terminants on caries risk.



110

Pedodontics / Pédodontie

Exclusion Criteria
Children with systemic diseases 

known to affect oral health, such 
as diabetes or immunodeficiency, 
were excluded to eliminate con-
founding variables that could skew 
the assessment of caries risk. Sim-
ilarly, participants with incomplete 
or missing data for critical variables, 
such as dietary habits, fluoride ex-
posure, or socioeconomic factors, 
were excluded to maintain the in-
tegrity of the data set and ensure 
robust predictive modeling. Addi-
tionally, patients undergoing ortho-
dontic treatment were not included 
because such interventions could 
influence oral health outcomes and 
potentially confound the analysis.

A total of 148 participants met 
these criteria and were included 
in this study. This sample size was 
considered sufficient for develop-
ing and validating machine-learning 
models while balancing computa-
tional feasibility.Patient confidenti-
ality was ensured by anonymizing 
the data. Access to the data set was 
restricted to authorized personnel, 
and all procedures complied with 
the ethical guidelines for retrospec-
tive studies.

Data Collection

Demographic Data
Demographic data were collected 

to examine the potential influence 
of social and environmental factors 
on the risk of caries. Information 
included the child’s age and gen-
der, along with the residential area 
(urban or rural), which provided in-
sight into access to oral healthcare 
resources. Socioeconomic status 
(SES) indicators such as parental 
education level and household in-
come were also recorded to evalu-
ate their association with caries risk. 
These variables helped establish 
a comprehensive context for ana-
lyzing disparities in oral health out-
comes [11].

Clinical Data
Clinical data served as a corner-

stone for assessing the current and 

past caries experiences of the par-
ticipants. The DMFT score was re-
corded for permanent teeth, while 
decayed, missing, and filled teeth 
in primary dentition were assessed 
separately. Cavitated teeth were 
identified based on ICDAS criteria, 
which include visual-tactile inspec-
tion, avoiding unnecessary probing 
to prevent damage. Additionally, 
plaque accumulation and overall oral 
hygiene status were evaluated to un-
derstand the relationship between 
oral hygiene practices and the risk of 
caries. These clinical parameters are 
essential for validating the predic-
tions of the machine-learning model.

Behavioral and Lifestyle Factors
Behavioral and lifestyle factors 

were included to account for mod-
ifiable risks associated with caries. 
The frequency of sugary food and 
beverage consumption was catego-
rized as daily, weekly, or rarely, pro-
viding a detailed picture of dietary 
habits. Sugary foods were defined 
as items containing added sugars or 
free sugars, such as sucrose, fruc-
tose, and glucose. Examples include 
candies, sugary beverages, pastries, 
and processed snacks. The study 
focused on dietary sugars contrib-
uting to cariogenic risks. Oral hy-
giene practices, such as frequency 
of tooth-brushing, use of fluoride 
toothpaste, flossing, and mouth 
rinses, were recorded to evaluate 
their preventive effects. Addition-
ally, data on the history of dental 
visits and preventive care, includ-
ing professional fluoride application 
and sealant placement, were col-
lected to determine their impact on 
reducing caries risk. These variables 
provide actionable insights into per-
sonalized prevention strategies.

Fluoride Exposure
Fluoride exposure, which is a 

critical determinant of caries pre-
vention, was assessed using multi-
ple sources. Information on the use 
of fluoridated toothpaste or mouth 
rinses was documented along with 
access to community water fluo-
ridation. The frequency and type 

of professional fluoride treatment 
were also recorded to understand 
the cumulative protective effects 
of fluoride on dental health. These 
data were crucial for assessing the 
role of fluoride in caries prevention 
and its integration into the predic-
tive model.

Family History and Genetic Predis-
position

Family history and genetic predis-
position were included to explore 
the inherited and shared environ-
mental factors influencing caries 
risk. The presence of a family his-
tory of dental caries among imme-
diate family members was docu-
mented to identify any potential 
genetic links. Any known hereditary 
conditions affecting enamel quality, 
salivary composition, or immune re-
sponses were also recorded. These 
factors contribute to the interplay 
between genetic and environmental 
influences in caries development.

Data Anonymization and Organiza-
tion

To ensure patient confidential-
ity, all the data were anonymized 
by assigning unique patient codes. 
An electronic database was created 
to store and organize the collected 
data, thereby facilitating seamless 
integration into the machine learn-
ing analysis. This structured ap-
proach to data collection and man-
agement ensured the reliability and 
integrity of the findings.

Data Pre-processing and Feature 
Engineering

To ensure that the data set was 
suitable for machine-learning anal-
ysis, several pre-processing steps 
were implemented.
Handling Missing Data: Missing 
values were addressed using the 
k-nearest neighbor (KNN) algorithm 
for numerical variables and mode 
imputation for categorical variables. 
This approach ensures that no sig-
nificant information is lost while 
maintaining data integrity.
Encoding Categorical Variables: 
Categorical variables such as fluo-
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ride use and SES were converted 
into numerical formats using one-
hot encoding. Binary variables, such 
as the presence or absence of active 
caries, were labeled as 0 or 1.
Normalization and Standardiza-
tion: Continuous variables, such as 
DMFT scores and frequency of sug-
ary food consumption, were stan-
dardized using z-scores. This step 
reduces the impact of outliers and 
ensures uniformity across different 
measurement scales.

Feature Selection Process and Re-
sults

To enhance the interpret-ability 
and performance of the machine 
learning models, recursive fea-
ture elimination (RFE) was used for 
feature selection. RFE is a wrap-
per-based feature-selection tech-
nique that imperatively evaluates 
a subset of features by training the 
model and removing the least sig-
nificant feature at each iteration 
until the optimal subset is obtained. 
In this study, RFE was implemented 
using a Random Forest classifier as 
the base model owing to its ability 
to handle nonlinear relationships 
and feature interactions.

Process Details
1.  Initial Feature Set: The initial 

data set included 25 features 
spanning the demographic, 
clinical, behavioral, dietary, and 
socioeconomic domains.

2.  Evaluation Criteria: Features 
were ranked based on their con-
tribution to model performance 
using the mean decrease in im-
purity (Gini importance).

3.  Iterative Removal: Features with 
the lowest importance scores 
were sequentially removed, 
and the model’s performance 
was re-evaluated at each step 
using cross-validation.

4.  Optimal Subset: The process 
identified an optimal subset 
of 15 features that maximized 
the predictive accuracy of the 
model while reducing compu-
tational complexity.

Features Retained 
The final selected features in-

cluded:
•  Clinical Factors: DMFT score, 

presence of active caries, and 
plaque index.

•  Behavioral Factors: Frequency 
of sugary food consumption, 
brushing frequency, and use of 
fluoride toothpaste.

•  Dietary Factors: Fluoride expo-
sure (toothpaste, mouth rinse, 
professional application) and 
community water fluoridation.

•  Socioeconomic Indicators: Pa-
rental education and household 
income.

•  Family History: Family history of 
dental caries and genetic predis-
position.

Features Removed: Non-contrib-
utory features such as residential 
area (urban/rural) and history of 
dental sealant placement were ex-
cluded, as they demonstrated min-
imal impact on the model’s perfor-
mance metrics.
Outcome of RFE: The feature se-
lection process improved the com-
putational efficiency of the ma-
chine-learning models by reducing 
the dimensionality of the dataset. 
Models trained on the selected fea-
tures demonstrated enhanced accu-
racy with no significant loss in sensi-
tivity or specificity compared to the 
full data set. 

Machine Learning Model Develop-
ment

Machine learning models have 
been developed using supervised 
learning techniques to classify pa-
tients into different caries risk cate-
gories. The data set was randomly 
split into training (80%) and testing 
(20%) subsets using stratified sam-
pling to ensure an even distribu-
tion of the risk levels. The following 
models were implemented:
Logistic Regression: Used as a 
baseline model, logistic regression 
provided a simple framework for 
binary classification and allowed 
comparison with more advanced al-
gorithms.

Random Forest Classifier: This en-
semble method constructs multiple 
decision trees and aggregates their 
predictions. Random forest was 
chosen for its ability to handle non-
linear relationships and interactions 
between variables.
Support Vector Machines (SVM): 
An SVM with a radial basis function 
(RBF) kernel was employed to cap-
ture complex patterns in the data.
Gradient Boosting (XGBoost): This 
boosting algorithm optimizes clas-
sification accuracy by imperatively 
reducing errors in predictions.
Neural Networks: A multi-layer per-
ceptron (MLP) was tested to evalu-
ate the applicability of deep learning 
in predicting caries risk.

Model Training and Validation
The training subset was used to 

train each model. Hyper parameter 
tuning was performed using a grid 
search with 10-fold cross-valida-
tion to optimize parameters such as 
the number of trees in the random 
forest and the learning rate in XG-
Boost. Over-fitting was mitigated 
using regularization techniques and 
cross-validation.

Model Evaluation
The performance of each model 

was evaluated on the testing subset 
using the following metrics.

•  Accuracy, sensitivity (recall), 
specificity, precision, F1-score, 
and area under the receiver 
operating characteristic curve 
(AUC-ROC).

•  The AUC-ROC is the primary 
metric for model comparison, 
as it provides a comprehensive 
measure of model performance.

Patients were stratified into three 
risk categories based on predicted 
probabilities: low (<30%), moder-
ate (30–70%), and high (>70%) risk.

Statistical Analysis
Descriptive statistics were calcu-

lated for the demographic, clinical, 
and behavioral variables. Associa-
tions between categorical variables 
and caries risk were analyzed using 
Chi-square tests, while independent 
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t-tests were used to compare contin-
uous variables, such as DMFT scores, 
across risk groups. Multivariate lo-
gistic regression was used to iden-
tify independent predictors of caries 
risk.Data analysis and modeling were 
conducted using Python (version 3.9) 
with libraries, such as Scikit-learn for 
ML, Pandas for data manipulation, 
and Matplotlib for visualization.

Results

The demographic and clinical 
characteristics of the participants 
showed disparities in caries risk. 
Urban participants (60.8%) had 

significantly higher DMFT scores 
compared to rural participants (p = 
0.045). Fluoride exposure was re-
ported in 74.3% of the children, and 
those with fluoride exposure exhib-
ited significantly lower DMFT scores 
(p = 0.012). No significant differ-
ences in caries risk were observed 
between sexes, indicating that other 
factors, such as behavioral and so-
cioeconomic variables, may play a 
more substantial role (Table 1). The 
mean DMFT score of 3.2 ± 1.5 re-
flects a moderate prevalence of car-
ies within this cohort.

Table 2 presents key behavioral 
and socioeconomic factors associ-

ated with caries risk. A majority of 
children (59.5%) consumed sugary 
foods three or more times per week, 
while 70.3% reported brushing their 
teeth at least twice daily. Addition-
ally, 64.2% of participants had a 
family history of caries. Notably, 
only 43.9% of parents had attained 
higher education.

The performance metrics in 
Table 3 confirm that XGBoost is the 
most effective model for predict-
ing caries risk in pediatric patients, 
achieving the highest accuracy 
(91.5% Â ± 1.3), sensitivity (89.7% 
Â ± 1.2), specificity (93.2% Â ± 
1.0), AUC-ROC (0.94; 95% CI: 0.92–

Table 1. Demographic and Clinical Characteristics of Participants

Characteristic N (%) Statistical Significance (p-value)
Age (mean ± SD) 8.7 ± 2.3 -
Gender -
Male 78 (52.7%)
Female 70 (47.3%)
Residential Area 0.045* (Urban vs. Rural)
Urban 90 (60.8%)
Rural 58 (39.2%)
Mean DMFT Score 3.2 ± 1.5 <0.001* (High vs. Low Risk Groups)
Fluoride Exposure 0.012* (Yes vs. No)
Yes 110 (74.3%)
No 38 (25.7%)

*significant if p<0.05

Table 2. Behavioral and Socioeconomic Factors

Factor N (%)
Frequency of Sugary Food (≥3 times/week) 88 (59.5%)
Brushing Frequency (≥2 times/day) 104 (70.3%)
Family History of Caries 95 (64.2%)
Parent Education (≥College) 65 (43.9%)

Table 3. Model Performance Metrics with F1-Score

Model
Accuracy 
(% ± SD)

Sensitivity (% ± SD) Specificity (% ± SD) AUC-ROC (95% CI) F1-Score (% ± SD)

Logistic 
Regression

82.4 ± 
2.1

80.1 ± 2.3 84.5 ± 1.8 0.85 (0.82–0.89) 79.3 ± 2.0

Random 
Forest

89.2 ± 
1.5

87.3 ± 1.7 90.8 ± 1.4 0.91 (0.88–0.93) 87.8 ± 1.8

SVM
85.7 ± 
1.9

84.1 ± 2.0 87.5 ± 1.6 0.88 (0.85–0.90) 84.9 ± 1.7

XGBoost
91.5 ± 
1.3

89.7 ± 1.2 93.2 ± 1.0 0.94 (0.92–0.96) 90.6 ± 1.4

Neural 
Network

90.2 ± 
1.6

88.4 ± 1.5 91.6 ± 1.3 0.92 (0.90–0.94) 89.2 ± 1.5
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0.96), and F1-score (90.6% Â ± 1.4). 
Neural Networks followed closely 
with an accuracy of 90.2% Â ± 1.6, 
AUC-ROC of 0.92 (95% CI: 0.90–
0.94), and F1-score of 89.2% Â ± 
1.5. Random Forest also performed 
well, with an AUC-ROC of 0.91 (95% 
CI: 0.88–0.93) and F1-score of 87.8% 
± 1.8, but it was slightly less precise 

than XGBoost. Logistic Regression 
showed the lowest performance, 
with an F1-score of 79.3% ± 2.0, 
and an AUC-ROC of 0.85 (95% CI: 
0.82–0.89).

The AUC-ROC values, as shown in 
Figure 1, demonstrate that XGBoost 
achieved the highest discriminatory 
ability among the models evaluated. 

Table 4 summarizes the distri-
bution of participants across the 
three caries risk categories pre-
dicted using the XGBoost model. 
The largest group (43.9%) fell under 
the moderate-risk category, while 
21.0% were classified as high-risk. 

Table 4. Caries Risk Categories Pre-
dicted by XGBoost

Risk Category N (%)
Low Risk 52 (35.1%)
Moderate Risk 65 (43.9%)
High Risk 31 (21.0%)

Figure 2. visually represents the 
distribution of the risk categories 
among the study participants. The 
bar graph illustrates that while a sig-
nificant proportion of children fall 
under the low- and moderate-risk 
categories, the high-risk group still 
represents a substantial 21%. 

Feature Importance (XGBoost)
Table 5 details the feature impor-

tance rankings from the XGBoost 
model. DMFT scores contributed 
35.2% to the overall importance, 
followed by the frequency of sug-
ary food consumption (28.7%) and 
fluoride exposure (18.3%). Parental 
education accounted for 6.4% of the 
feature importance.

Table 5. Feature Importance (XGBoost)

Feature Importance (%)

DMFT Score 35.2

Frequency of 
Sugary Food

28.7

Fluoride Expo-
sure

18.3

Family History 
of Caries

11.4

Parental Edu-
cation

6.4

Figure 1.  AUC-ROC Curve for ML Models Caries Risk Categories Predicted by XGBoost

Figure 2. Risk Category Distribution
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Discussion

This study aimed to develop and 
validate machine learning (ML) 
models to predict caries risk in pe-
diatric patients by leveraging a 
comprehensive dataset comprising 
clinical, behavioral, dietary, and so-
cioeconomic variables. The find-
ings demonstrated that ML models, 
particularly XGBoost, can achieve 
high predictive accuracy, sensitivity, 
and specificity, offering a robust ap-
proach to the early identification of 
children at risk for dental caries. 

The findings of this study demon-
strated that the XGBoost model 
achieved superior performance 
compared to traditional methods, 
such as logistic regression, with an 
AUC-ROC of 0.94. This high level of 
performance underscores the effec-
tiveness of gradient boosting algo-
rithms in capturing complex, non-
linear relationships and interactions 
between variables commonly seen 
in multifactorial conditions such 
as dental caries. Gradient boosting 
models such as XGBoost are used 
to analyze diverse datasets with in-
terdependent variables, providing 
accurate and actionable risk predic-
tions. These results align with those 
of prior research, emphasizing the 
utility of machine learning (ML) in 
improving dental risk assessments.

For instance, Çiftçi and Aşantoğrol 
used ML models to predict caries 
risk groups and oral health-related 
risk factors in adults. Their study 
demonstrated a high predictive ac-
curacy, highlighting the potential of 
ML in caries risk assessment. Simi-
larly, their findings emphasized the 
importance of key predictors, such 
as dietary habits, fluoride exposure, 
and past caries experience, which 
align closely with the predictors 
identified in the present study [8]. 
This convergence underscores the 
ability of ML to integrate diverse 
variables into reliable, clinically rel-
evant predictive models.

Such studies reinforce the ob-
servations of this study, in which 
XGBoost excelled by integrating 
multifactorial data and producing 

actionable predictions with high re-
liability. The identification of DMFT 
scores, sugary food consumption, 
and fluoride exposure as the most 
significant predictors further aligns 
with prior findings that emphasize 
the importance of both clinical and 
behavioral factors in caries risk as-
sessment. These consistent results 
across studies highlight the robust-
ness of ML tools in addressing den-
tal caries, paving the way for more 
widespread adoption of such tech-
nologies in both clinical and public 
health settings [12-14]

Moreover, this study underscores 
the importance of incorporating 
diverse predictors into ML mod-
els. DMFT scores emerged as the 
most important variable, consistent 
with the existing evidence that past 
caries experience is a strong indi-
cator of future risk. The significant 
contributions of dietary habits and 
fluoride exposure to the predictive 
model further emphasized the mul-
tifactorial nature of caries. Previous 
research by Pang et al. also high-
lighted the importance of integrat-
ing behavioral and environmental 
factors into AI-based caries risk as-
sessments [15].

Stratification of patients into low-, 
moderate-, and high-risk categories 
is a key strength of this study, pro-
viding actionable insights for per-
sonalized prevention. The finding 
that 21.0% of the participants were 
classified as high-risk underscores 
the need for targeted interventions 
in this subgroup. High-risk patients 
can benefit from preventive mea-
sures such as fluoride varnishes, 
dietary counseling, and regular 
monitoring, as recommended by 
the European Academy of Pediat-
ric Dentistry (EAPD) [16]. Similarly, 
moderate-risk patients may require 
tailored interventions to prevent 
progression to high-risk status.

The utility of risk stratification 
extends from individual patient 
care to public health planning. By 
identifying high-risk populations, 
health care providers and policy-
makers can allocate resources more 
effectively. For example, commu-

nity-based fluoride programs or 
school-based oral health education 
initiatives could be prioritized in re-
gions with a higher prevalence of 
high-risk individuals. Such targeted 
approaches have been shown to re-
duce caries incidence and improve 
oral health outcomes [17].

Traditional caries risk assessment 
tools, such as the Caries Manage-
ment by Risk Assessment (CAM-
BRA) protocol, rely on clinician 
judgment and subjective evaluation 
of risk factors [18]. While effective, 
these methods are often limited by 
variability in clinician expertise and 
the inability to analyze complex in-
teractions between variables. By 
contrast, ML models can process 
large datasets with multiple interde-
pendent variables, providing objec-
tive and reproducible predictions. 
This advantage was evident in the 
current study, where ML models 
achieved higher predictive accuracy 
than the conventional approaches 
reported in the literature [19, 20].

However, the integration of ML 
models into clinical practice re-
quires careful consideration of in-
terpretability. Clinicians may find it 
challenging to understand the de-
cision-making processes of com-
plex algorithms, such as XGBoost 
or neural networks. Explainable AI 
(XAI) techniques, such as Shap-
ley Additive Explanations (SHAP), 
can be used to elucidate the con-
tributions of individual variables to 
model predictions, enhancing clini-
cian trust and adoption [21].

The significant role of sugary food 
consumption and fluoride exposure 
in caries risk prediction highlights 
the importance of addressing the 
modifiable risk factors. Frequent 
consumption of sugary foods and 
beverages was the second most 
important predictor, contributing 
28.7% of the XGBoost model. This 
finding aligns with the well-estab-
lished relationship between dietary 
sugars and caries development doc-
umented in numerous epidemiolog-
ical studies. For instance, the WHO 
recommends limiting free sugar in-
take to less than 10% of the total en-
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ergy consumption to reduce caries 
risk [22].

Fluoride exposure, the third most 
important predictor in this study, 
accounted for 18.3% of the mod-
el’s predictive power. The protec-
tive effect of fluoride against caries 
is well documented, with evidence 
supporting its role in enhancing 
enamel remineralization and inhib-
iting demineralization [23]. Commu-
nity water fluoridation, fluoridated 
toothpaste, and professional fluo-
ride applications have been shown 
to significantly reduce caries preva-
lence in children [23]. The findings 
of this study reinforce the need for 
the continued promotion of fluoride 
use as a cornerstone for caries pre-
vention.

A family history of caries, a 
proxy for genetic predisposition 
and shared environmental factors, 
contributed 11.4% to the predic-
tive model. Genetic susceptibility to 
caries has been linked to variations 
in enamel formation, salivary com-
position, and immune responses, 
underscoring the complex interplay 
between genetics and caries risk 
[24]. Additionally, parental educa-
tion and socioeconomic status (SES) 
were associated with caries risk, al-
beit with lower importance scores. 
These findings are consistent with 
research indicating that lower SES 
is linked to limited access to preven-
tive care, unhealthy dietary habits, 
and reduced fluoride use [25].

The implementation of ML-based 
caries risk prediction models has 
several implications in clinical prac-
tice. First, these models can facili-
tate early identification of high-risk 
patients, enabling timely and tar-
geted interventions. Second, ML 
tools can support evidence-based 
decision making, reduce reliance 
on subjective assessments, and im-
prove diagnostic accuracy. Third, by 
stratifying patients based on risk, 
clinicians can prioritize resources 
for those who need them the most, 
thereby enhancing the efficiency of 
dental care delivery.

From a public health perspec-
tive, ML models can inform popu-

lation-level strategies for the pre-
vention of caries. For example, 
predictive models can identify geo-
graphic areas with a higher preva-
lence of high-risk children, thereby 
guiding the allocation of resources 
for community-based interventions. 
Additionally, ML tools can be inte-
grated into school-based oral health 
programs to provide educators and 
health workers with data-driven in-
sights to tailor preventive measures.

Despite its strengths, this study 
had several limitations. First, the 
sample size may have limited the 
generalization of the findings. Larger 
multi center datasets are needed to 
validate the models and ensure their 
applicability across diverse popu-
lations. Second, the retrospective 
design of the study relied on the 
availability and quality of existing re-
cords, which may have introduced 
selection bias or data inaccuracies. 
Prospective studies with standard-
ized data collection protocols are 
warranted to address these issues.

Another limitation is the potential 
under representation of certain risk 
factors, such as salivary biomark-
ers or oral micro-biome composi-
tion, which were not included in 
this study. Future research should 
explore the integration of biological 
markers into ML models to enhance 
their predictive accuracy. Longitu-
dinal studies are needed to assess 
the long-term performance of these 
models in predicting caries risk over 
time.

Finally, the successful imple-
mentation of ML models in clinical 
practice requires addressing barri-
ers, such as cost, technical exper-
tise, and clinician acceptance. Us-
er-friendly interfaces and clinician 
training programs are critical to 
ensure the widespread adoption of 
these tools.

Conclusion

This study demonstrated the po-
tential of machine learning models, 
particularly XGBoost, to provide 
accurate and clinically relevant pre-
dictions of caries risk in pediatric 

patients. By incorporating diverse 
clinical, behavioral, and environ-
mental factors, these models offer a 
data-driven approach to risk assess-
ment, thereby addressing the limita-
tions of traditional methods. These 
findings highlight the importance of 
modifiable risk factors, such as diet 
and fluoride use, in caries preven-
tion and underscore the need for 
targeted interventions for high-risk 
populations.

Future efforts should focus on 
validating these models in larger, 
more diverse cohorts, integrating 
novel risk factors, and developing 
user-friendly tools for clinical appli-
cations. By leveraging the power of 
AI, dentistry can advance toward a 
more predictive, personalized, and 
preventive approach to caries man-
agement, ultimately improving oral 
health outcomes in children.
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